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Motivation by Two examples Example 1: Trace process

Trace process

Let d ≥ 1, Rd
+ := {x = (x̃, xd) : xd > 0} and Rd

− := {x = (x̃, xd) : xd < 0}.

Let
X = (Xt,Px) be an isotropic α-stable process in Rd where α ∈ (0, 2). The infinitesimal
generator of X is the fractional Laplacian ∆

α
2 := −(−∆)

α
2 which can be written as

∆
α
2 f(x) = p.v.

∫
Rd

(f(y)− f(x))Cd,α|x− y|−d−α dy,

where Cd,α|x− y|−d−α is the jump kernel of X where Cd,α is a positive constant
depending only on d and α. (we take Cd,α = 1 in this talk.)
Define At :=

∫ t
0 1Rd

+
(Xs)ds and let τt := inf{s > 0 : As > t} be its right-continuous

inverse.
The process Y = (Yt)t≥0, defined by Yt = Xτt called the trace process of X on Rd

+.
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Motivation by Two examples Example 1: Trace process

Trace process through resurrection

The part of the trace process Y until its first hitting time of the boundary
∂Rd

+ = {(x̃, 0) : x̃ ∈ Rd−1} can be described in the following way:

Let τ = τRd
+

= inf{t > 0 : Xt /∈ Rd
+} be the first exit time of X from Rd

+.

Let x = Xτ− ∈ Rd
+ the position from which X jumps out of Rd

+, and z = Xτ be the
position where X lands at the exit from Rd

+.

z ∈ Rd
− a.s.,
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Trace process through resurrection

GX
Rd
−
(z, w), the Green function of the process X killed upon exiting Rd

−.

That is,

Ez
∫ τRd−
0 1A(Xt)dt =

∫
A GX

Rd
−
(z, w)dw.
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Motivation by Two examples Example 1: Trace process

Trace process through resurrection

|w − y|−d−α is the jump kernel of X.

The distribution of the returning position of X to
Rd
+ is given by the Poisson kernel of the process X in Rd

−:

PRd
−
(z, y) =

∫
Rd
−

GX
Rd
−
(z, w)|w − y|−d−α dw, y ∈ Rd

+, z ∈ Rd
−.

For z ∈ Rd
−, Pz(XτRd−

∈ dy) = PRd
−
(z, y)dy = Ez

∫ τ
0 |Xs − y|−d−αdsdy on Rd

+.
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Motivation by Two examples Example 1: Trace process

Trace process through resurrection

When X jumps out of Rd
+ from the point x, we continue the process by resurrecting it

at y ∈ Rd
+ according to the kernel

q(x, y) :=

∫
Rd
−

|x− z|−d−αPRd
−
(z, y) dz, x, y ∈ Rd

+. (1.1)

We will call q(x, y) a resurrection kernel.
Since GX

Rd
−
(·, ·) is symmetric, it follows that q(x, y) = q(y, x) for all x, y ∈ Rd

+.
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Motivation by Two examples Example 1: Trace process

Trace process through resurrection

The kernel q(x, y) introduces additional jumps from x to y, x, y ∈ Rd
+.

Rd
+

Rd
-

x y

z w
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Motivation by Two examples Example 1: Trace process

Trace process through resurrection

By using Meyer’s construction (Meyer 75), one can construct a resurrected process on
Rd
+ with jump kernel J(x, y) = |x− y|−d−α + q(x, y).

The resurrected process is equal to the part of the trace process Y until it first hits
∂Rd

+.

It follows from [Bogdan, Grzywny, Pietruska-Pałuba & Rutkowski, 20] that (in case
d ≥ 3),

J(x, y) ≍ q(x, y) ≍ |x− y|–d−α

(
|x− y|2

xd yd

)α/2

, xd ∧ yd ≤ |x− y|.

This asymptotic relation shows that the jump kernel J(x, y) blows up with rate x
−α/2
d

when x approaches the boundary ∂Rd
+.
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Motivation by Two examples Example 2: Non-local Neumann problems

Non-local Neumann problems with corresponding resurrection
kernel

Another motivation is the process introduced in

Dipierro, Ros-Oton & Valdinoci. Nonlocal problems with Neumann boundary
conditions. Rev. Mat. Iberoam. 33 (2017), 377-416.

Vondraček. A probabilistic approach to non-local quadratic from and its connection
to the Neumann boundary condition problem. Math. Nachrichten 294 (2021),
177-194.

to study non-local Neumann problems.

For that process, the resurrection kernel q(x, y) is given by (1.1) with the Poisson
kernel PRd

−
(z, y) replaced by |z − y|−d−α/

∫
Rd
+
|z − w|−d−αdw.

That is,

q(x, y) =

∫
Rd
−

|x− z|−d−α|z − y|−d−α∫
Rd
+
|z − w|−d−αdw

dz, x, y ∈ Rd
+.

The jump kernel of this process blows up with rate log |xd| when x approaches the
boundary ∂Rd

+.
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Estimates of resurrection kernel in general case

Resurrection kernel in general case

We generalize these two examples by replacing the Poisson kernel PRd
−
(z, y) and the

kernel |z − y|−d−α/
∫
Rd
+
|z − w|−d−αdw by a very general return kernel p(z, y).

Let the kernel y 7→ p(z, y), z ∈ Rd
−, y ∈ Rd

+, be a probability density such that the
corresponding resurrection kernel

q(x, y) =

∫
Rd
−

|x− z|−d−αp(z, y) dy, x, y ∈ Rd
+,

is symmetric.
This flexibility in choosing the return kernel allows us to obtain resurrection kernels with
various blow-up rates at the boundary.

A general upper bound

q(x, y) ≤ c(xd ∧ yd)
−d−α
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Estimates of resurrection kernel in general case

An example of general forms

We consider the following general resurrection kernel:

q(x, y) := c

∫
Rd
−

Ψ

(
|y − z|2

yd|zd|

)
|zd|α

|y − z|d+α

dz

|x− z|d+α
, x, y ∈ Rd

+,

Then
q(λx, λy) = λ−d−αq(x, y)

and
q(x+ (ũ, 0), y + (ũ, 0)) = q(x, y).

Moreover,
q(x, y) = q(y, x).
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An example of general forms
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Ψ

(
|y − z|2
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)
|zd|α

|y − z|d+α

dz

|x− z|d+α
, x, y ∈ Rd

+,

Exmaple

(a) For the trace process of an isotopic α-stable process on Rd
+,

p(z, y) = c
|zd|α/2

y
α/2
d

|z − y|−d = c

(
|y − z|2

yd|zd|

)α/2 |zd|α

|y − z|d+α
,

is the Poisson kernel for Rd
−.

Thus, here Ψ(r) = crα/2.
(b) For the process studied in Non-local Neumann problems,
p(z, y) = |z − y|−d−α/µ(z) where µ(z) =

∫
Rd
+
|z − y|−d−αdy. Since

µ(z) = c−1|zd|−α, we get that
p(z, y) = c

|zd|α

|y − z|d+α
.

Thus, here Ψ ≡ c.
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Estimates of resurrection kernel in general case

An example of general forms

Let
B(x, y) := 1 + q(x, y)|x− y|d+α

so that

J(x, y) = |x− y|−d−α + q(x, y) =
B(x, y)

|x− y|d+α
.

In [KSV] , we have established estimates of resurrection kernel for general Ψ with weak
scaling conditions.
As a corollary of this general result, we have the following.
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Estimates of resurrection kernel in general case

Blow-up at the boundary: example

Corollary: Let γ ∈ (−∞, 1 ∧ α) and δ ∈ R. Suppose Ψ(t) = tγ logδ t, t ≥ 2,

that is, up
to a multiplicative constant,

p(z, y) =
|zd|α−γ

yγd

logδ
(

|y−z|2
yd|zd|

)
|y − z|d+α−2γ

=

(
|y − z|2

yd|zd|

)γ logδ
(

|y−z|2
yd|zd|

)
|y − z|d+α−2γ

, z ∈ Rd
−, y ∈ Rd

+.

Then (1) for any x, y ∈ Rd
+ with xd ∧ yd > |x− y|, it holds that

q(x, y)≍(xd ∧ yd)
−d−α≍(xd ∨ yd)

−d−α, B(x, y)− 1 ≍
(

|x− y|
xd ∧ yd

)d+α

.

(2) For x, y ∈ Rd
+ with xd ∧ yd ≤ |x− y|, it holds that

q(x, y) ≍ J(x, y) ≍ |x− y|−d−α



(
|x−y|2
xdyd

)γ
logδ

(
|x−y|2
xdyd

)
when γ > 0;

logδ+1
(

|x−y|2
xdyd

)
when δ > −1, γ = 0;

log
(
e+ log

( |x−y|2
xdyd

))
when δ = −1, γ = 0;

1 when δ < −1, γ = 0 or γ < 0.
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Dirichlet forms with jump kernels blowing up at the boundary Setup

Weak scaling condition

Let d ≥ 1, α ∈ (0, 2) and assume that 0 ≤ β1 ≤ β2 < 1 ∧ α.

Let Φ be a positive function on (0,∞) satisfying Φ ≡ 1 on (0, 2) and the following weak
scaling condition on [2,∞): There exist constants C1, C2 > 0 such that

C1(R/r)β1 ≤
Φ(R)

Φ(r)
≤ C2(R/r)β2 , 2 ≤ r < R < ∞.
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Dirichlet forms with jump kernels blowing up at the boundary Setup

Boundary term

Define J(x, y) =
B(x, y)

|x− y|d+α
.

We assume that B(x, y) satisfies the following conditions:
(A1) B(x, y) = B(y, x) for all x, y ∈ Rd

+.
(A2) If α ≥ 1, there exists θ > α− 1 such that for every a > 0 there exists
C = C(a) > 0 such that

|B(x, y)− B(x, x)| ≤ C

(
|x− y|
xd ∧ yd

)θ

for all x, y ∈ Rd
+ with xd ∧ yd ≥ a|x− y|.

(A3) There exists C ≥ 1 such that

C−1Φ

(
|x− y|2

xdyd

)
≤ B(x, y) ≤ CΦ

(
|x− y|2

xdyd

)
for all x, y ∈ Rd

+.

(A4) For all x, y ∈ Rd
+ and a > 0, B(ax, ay) = B(x, y).

In case d ≥ 2, B(x+ (z̃, 0), y + (z̃, 0)) = B(x, y) for all x, y ∈ Rd
+ and z̃ ∈ Rd−1.

Remark: (1) (A3) ⇒ B(x, y) ≥ c1 > 0. (2) (A4) ⇒ B(x, x) ≡ c2 > 0 .
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Dirichlet forms with jump kernels blowing up at the boundary Setup

Dirichlet form with critical killing (Potential) term

For κ ∈ [0,∞), set

Eκ(u, v) :=
1

2

∫
Rd
+

∫
Rd
+

(u(x)−u(y))(v(x)−v(y))J(x, y)dydx+

∫
Rd
+

u(x)v(x)κx−α
d dx.

Let F0 be the closure of C∞
c (Rd

+) in L2(Rd
+, dx) under E0

1 := E0 + (·, ·)L2(Rd
+,dx).

Then, due to β2 < 1 ∧ α,

(E0,F0) is a regular Dirichlet form on L2(Rd
+, dx).

For κ > 0, let Fκ := F0 ∩ L2(Rd
+, κx−α

d dx).

(Eκ,Fκ) is also a regular Dirichlet form on L2(Rd
+, dx).

Under assumptions (A1)-(A4), for all κ ∈ [0,∞), there exists a symmetric, scale
invariant and horizontally translation invariant Hunt process
Y κ = ((Y κ

t )t≥0, (Px)x∈Rd
+
) associated with (Eκ,Fκ).

Panki Kim Potential theory of Dirichlet forms with jump kernels blowing up at the boundary



28/ 38

Dirichlet forms with jump kernels blowing up at the boundary Setup

Dirichlet form with critical killing (Potential) term

For κ ∈ [0,∞), set

Eκ(u, v) :=
1

2

∫
Rd
+

∫
Rd
+

(u(x)−u(y))(v(x)−v(y))J(x, y)dydx+

∫
Rd
+

u(x)v(x)κx−α
d dx.

Let F0 be the closure of C∞
c (Rd

+) in L2(Rd
+, dx) under E0

1 := E0 + (·, ·)L2(Rd
+,dx).

Then, due to β2 < 1 ∧ α,

(E0,F0) is a regular Dirichlet form on L2(Rd
+, dx).

For κ > 0, let Fκ := F0 ∩ L2(Rd
+, κx−α

d dx).

(Eκ,Fκ) is also a regular Dirichlet form on L2(Rd
+, dx).

Under assumptions (A1)-(A4), for all κ ∈ [0,∞), there exists a symmetric, scale
invariant and horizontally translation invariant Hunt process
Y κ = ((Y κ

t )t≥0, (Px)x∈Rd
+
) associated with (Eκ,Fκ).

Panki Kim Potential theory of Dirichlet forms with jump kernels blowing up at the boundary



28/ 38

Dirichlet forms with jump kernels blowing up at the boundary Setup

Dirichlet form with critical killing (Potential) term

For κ ∈ [0,∞), set

Eκ(u, v) :=
1

2

∫
Rd
+

∫
Rd
+

(u(x)−u(y))(v(x)−v(y))J(x, y)dydx+

∫
Rd
+

u(x)v(x)κx−α
d dx.

Let F0 be the closure of C∞
c (Rd

+) in L2(Rd
+, dx) under E0

1 := E0 + (·, ·)L2(Rd
+,dx).

Then, due to β2 < 1 ∧ α,

(E0,F0) is a regular Dirichlet form on L2(Rd
+, dx).

For κ > 0, let Fκ := F0 ∩ L2(Rd
+, κx−α

d dx).

(Eκ,Fκ) is also a regular Dirichlet form on L2(Rd
+, dx).

Under assumptions (A1)-(A4), for all κ ∈ [0,∞), there exists a symmetric, scale
invariant and horizontally translation invariant Hunt process
Y κ = ((Y κ

t )t≥0, (Px)x∈Rd
+
) associated with (Eκ,Fκ).

Panki Kim Potential theory of Dirichlet forms with jump kernels blowing up at the boundary



28/ 38

Dirichlet forms with jump kernels blowing up at the boundary Setup

Dirichlet form with critical killing (Potential) term

For κ ∈ [0,∞), set

Eκ(u, v) :=
1

2

∫
Rd
+

∫
Rd
+

(u(x)−u(y))(v(x)−v(y))J(x, y)dydx+

∫
Rd
+

u(x)v(x)κx−α
d dx.

Let F0 be the closure of C∞
c (Rd

+) in L2(Rd
+, dx) under E0

1 := E0 + (·, ·)L2(Rd
+,dx).

Then, due to β2 < 1 ∧ α,

(E0,F0) is a regular Dirichlet form on L2(Rd
+, dx).

For κ > 0, let Fκ := F0 ∩ L2(Rd
+, κx−α

d dx).

(Eκ,Fκ) is also a regular Dirichlet form on L2(Rd
+, dx).

Under assumptions (A1)-(A4), for all κ ∈ [0,∞), there exists a symmetric, scale
invariant and horizontally translation invariant Hunt process
Y κ = ((Y κ

t )t≥0, (Px)x∈Rd
+
) associated with (Eκ,Fκ).

Panki Kim Potential theory of Dirichlet forms with jump kernels blowing up at the boundary



28/ 38

Dirichlet forms with jump kernels blowing up at the boundary Setup

Dirichlet form with critical killing (Potential) term

For κ ∈ [0,∞), set

Eκ(u, v) :=
1

2

∫
Rd
+

∫
Rd
+

(u(x)−u(y))(v(x)−v(y))J(x, y)dydx+

∫
Rd
+

u(x)v(x)κx−α
d dx.

Let F0 be the closure of C∞
c (Rd

+) in L2(Rd
+, dx) under E0

1 := E0 + (·, ·)L2(Rd
+,dx).

Then, due to β2 < 1 ∧ α,

(E0,F0) is a regular Dirichlet form on L2(Rd
+, dx).

For κ > 0, let Fκ := F0 ∩ L2(Rd
+, κx−α

d dx).

(Eκ,Fκ) is also a regular Dirichlet form on L2(Rd
+, dx).

Under assumptions (A1)-(A4), for all κ ∈ [0,∞), there exists a symmetric, scale
invariant and horizontally translation invariant Hunt process
Y κ = ((Y κ

t )t≥0, (Px)x∈Rd
+
) associated with (Eκ,Fκ).

Panki Kim Potential theory of Dirichlet forms with jump kernels blowing up at the boundary



28/ 38

Dirichlet forms with jump kernels blowing up at the boundary Setup

Dirichlet form with critical killing (Potential) term

For κ ∈ [0,∞), set

Eκ(u, v) :=
1

2

∫
Rd
+

∫
Rd
+

(u(x)−u(y))(v(x)−v(y))J(x, y)dydx+

∫
Rd
+

u(x)v(x)κx−α
d dx.

Let F0 be the closure of C∞
c (Rd

+) in L2(Rd
+, dx) under E0

1 := E0 + (·, ·)L2(Rd
+,dx).

Then, due to β2 < 1 ∧ α,

(E0,F0) is a regular Dirichlet form on L2(Rd
+, dx).

For κ > 0, let Fκ := F0 ∩ L2(Rd
+, κx−α

d dx).

(Eκ,Fκ) is also a regular Dirichlet form on L2(Rd
+, dx).

Under assumptions (A1)-(A4), for all κ ∈ [0,∞), there exists a symmetric, scale
invariant and horizontally translation invariant Hunt process
Y κ = ((Y κ

t )t≥0, (Px)x∈Rd
+
) associated with (Eκ,Fκ).

Panki Kim Potential theory of Dirichlet forms with jump kernels blowing up at the boundary



29/ 38

Dirichlet forms with jump kernels blowing up at the boundary Decay rate of harmonic function
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Dirichlet forms with jump kernels blowing up at the boundary Decay rate of harmonic function

Decay rate and the constant on the killing function

We now associate the constant κ from the killing function x−α
d with a positive

parameter p = pκ > 0 which will be the decay rate of harmonic functions.

Let ed := (0̃, 1). For q ∈ [0, α− β2), set

C(α, q,B)=


∫
Rd−1

∫ 1

0

(sq − 1)(1− sα−q−1)

(1− s)1+α

B
(
(1− s)ũ, 1), sed

)
(|ũ|2 + 1)(d+α)/2

dsdũ if d ≥ 2∫ 1

0

(sq − 1)(1− sα−q−1)

(1− s)1+α
B
(
1, s

)
ds if d = 1.

Then C(α, 0,B) = C(α, α− 1,B) = 0 and the function q 7→ C(α, q,B) is strictly
increasing and continuous on [(α− 1)+, α− β2).
Consequently, for every 0 ≤ κ < limq↑α−β2

C(α, q,B) ≤ ∞, there exists a unique
pκ ∈ [(α− 1)+, α− β2) such that

κ = C(α, pκ,B). (3.1)

When Φ(r) = rβ with β ∈ (0, 1 ∧ α), it holds that limq↑α−β C(α, q,B) = ∞, so
κ 7→ pκ is an increasing bijection from [0,∞) onto [(α− 1)+, α− β).

Panki Kim Potential theory of Dirichlet forms with jump kernels blowing up at the boundary



30/ 38

Dirichlet forms with jump kernels blowing up at the boundary Decay rate of harmonic function

Decay rate and the constant on the killing function

We now associate the constant κ from the killing function x−α
d with a positive

parameter p = pκ > 0 which will be the decay rate of harmonic functions.
Let ed := (0̃, 1). For q ∈ [0, α− β2), set

C(α, q,B)=


∫
Rd−1

∫ 1

0

(sq − 1)(1− sα−q−1)

(1− s)1+α

B
(
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(1− s)ũ, 1), sed

)
(|ũ|2 + 1)(d+α)/2
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Decay rate and the constant on the killing function
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In the remainder of this talk we will fix κ ∈ [0, limq↑α−β2
C(α, q,B)), and assume

α > 1 if κ = 0 so that p0 = α− 1 > 0.

For notational simplicity, in the remainder of this talk, we omit the superscript κ on pκ
and use p instead of pκ in (3.1).
The role of the parameter p and its connection to κ = C(α, p,B) can be seen from the
following observation. Let

LBf(x) = LB,κf(x) = p.v.
∫
Rd
+

(f(y)−f(x))J(x, y) dy−C(α, p,B)x−α
d f(x), x ∈ Rd

+,

whenever the principal value integral makes sense.

If gp(x) = xp
d, then LBgp ≡ 0.

Hence the operator LB annihilates the p-th power of the distance to the boundary.
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Main results

Scale invariant boundary Harnack principle with exact decay rate

Theorem 2

Suppose p ∈ (0, α− β2) ∩ [(α− 1)+, α− β2).

Assume that B satisfies (A1)-(A4) and κ = C(α, p,B). Then there exists C ≥ 1 such
that for all r > 0, w̃ ∈ Rd−1, and any non-negative function f in Rd

+ which is harmonic
in B((w̃, 0), 2r) ∩ Rd

+ with respect to Y κ and vanishes continuously on
B((w̃, 0), 2r) ∩ ∂Rd

+, we have

f(x)

xp
d

≤ C
f(y)

ypd
, x, y ∈ B((w̃, 0), r/2)) ∩ Rd

+.
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Main results

Sharp two-sided estimates for the Green function

Theorem 3

Suppose that p ∈ (0, α− β2) ∩ [(α− 1)+, α− β2) and that B satisfies (A1)-(A4) and
κ = C(α, p,B).

Then the process Y κ admits a Green function
Gκ : Rd

+ × Rd
+ → [0,∞] such that Gκ(x, ·) is continuous in Rd

+ \ {x}. Moreover,
Gκ(x, y) has the following estimates: for all x, y ∈ Rd

+,

Gκ(x, y) ≍



(
xd

|x− y|
∧ 1

)p (
yd

|x− y|
∧ 1

)p 1

|x− y|d−α
, α < d;(

x ∧ y

|x− y|
∧ 1

)p

log

(
e+

x ∨ y

|x− y|

)
, α = 1 = d;(

x ∧ y

|x− y|
∧ 1

)p

(x ∨ y ∨ |x− y|)α−1 , α > 1 = d.
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Main results

The results in this talk can be considered as a counterpart of our previous work on
jump kernels vanishing at the boundary:

[KSV1] K, Song & Vondraček: On potential theory of Markov processes with jump kernels
decaying at the boundary. Potential Analysis (2023).

[KSV2] K, Song & Vondraček, Sharp two-sided Green function estimates for Dirichlet
forms degenerate at the boundary. To appear in Journal of the European
Mathematical Society (JEMS), 2023.

[KSV3] K, Song & Vondraček, Potential theory of Dirichlet forms degenerate at the
boundary: the case of no killing potential. To appear in Mathematische Annalen,
2023.

The research in [KSV1]-[KSV3] was motivated by the fact that subordinate killed Lévy
processes have jump kernels vanishing at the boundary.
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Main results

Combined with jump kernel vanishing at the boundary

As a particular case,

B(x, y) ≍
(

xd

|x− y|
∧ 1

)β (
yd

|x− y|
∧ 1

)β

≍
(

xdyd

|x− y|2
∧ 1

)β

= B̃(x, y).

This is the same form as in the blow-up case with Φ(t) = t−β , −(1 ∧ α) < β ≤ 0.

In the decay case (β > 0), for every κ ∈ [0,∞), there is a unique
p = pκ ∈ [(α− 1)+, α+ β) such that κ = C(α, p, B̃).

This is exactly equal to the
blow-up case.

In the decay case with B as above, we have already proved the BHP and the Green
function estimate with the decay rate equal to the p-th power of the distance to the
boundary. Thus, we now have these results for all −(1 ∧ α) < β < ∞.
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Main results

No killing case

Suppose κ = 0, α > 1 , (A2) and (A4) hold and

B(x, y) ≍
(

xd

|x− y|
∧ 1

)β (
yd

|x− y|
∧ 1

)β

= B̃(x, y).

where −(1 ∧ α) < β < ∞.

The corresponding non-local operator is

Lf(x) := p.v.
∫
Rd
+

(f(y)− f(x))
B(x, y)

|x− y|d+α
dy, x ∈ Rd

+ ,

Then BHP holds and the standard form of Green function estimates with p = α− 1.

This covers the case of the censored α-stable process (B(x, y) ≡ 1), α ∈ (1, 2),
studied in Bogdan, Burdzy & Chen, 03, in the half-space case.
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Main results

Thank you.

감사합니다.
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