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Motivation by Two examples Example 1: Trace process

Trace process

Letd > 1, R := {x = (Z,24) : &g > 0} andR? := {z = (Z,zq) : x4 < 0}.
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Motivation by Two examples Example 1: Trace process

Trace process

Letd > 1, R? := {x = (F,24) : g > 0} andR? := {x = (Z,xq) : x4 < 0}. Let
X = (X, P,) be an isotropic a-stable process in R¢ where o € (0, 2).
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Trace process

Letd > 1, R? := {x = (F,24) : g > 0} andR? := {x = (Z,xq) : x4 < 0}. Let
X = (X, P,) be an isotropic a-stable process in R¢ where « € (0, 2). The infinitesimal
generator of X is the fractional Laplacian A2 := —(—A)2 which can be written as

A% f@) =pv. | (F(0) = F@)Cuale =3~ dy,
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X = (X, P,) be an isotropic a-stable process in R¢ where « € (0, 2). The infinitesimal
generator of X is the fractional Laplacian A2 := —(—A)2 which can be written as

A% f@) =pv. | (F(0) = F@)Cuale =3~ dy,

where Cy o |z — y| @~ is the jump kernel of X where Cy ,, is a positive constant
depending only on d and «.
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Trace process

Letd > 1, R? := {x = (F,24) : g > 0} andR? := {x = (Z,xq) : x4 < 0}. Let
X = (X, P,) be an isotropic a-stable process in R¢ where « € (0, 2). The infinitesimal
generator of X is the fractional Laplacian A2 := —(—A)2 which can be written as

A% f@) =pv. | (F(0) = F@)Cuale =3~ dy,

where Cy o |z — y| @~ is the jump kernel of X where Cy ,, is a positive constant
depending only on d and «. (we take C'; ., = 1 in this talk.)
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Motivation by Two examples Example 1: Trace process

Trace process

Letd > 1, R? := {x = (F,24) : g > 0} andR? := {x = (Z,xq) : x4 < 0}. Let
X = (X, P,) be an isotropic a-stable process in R¢ where « € (0, 2). The infinitesimal
generator of X is the fractional Laplacian A2 := —(—A)2 which can be written as

A% f@) =pv. | (F(0) = F@)Cuale =3~ dy,

where Cy o |z — y| @~ is the jump kernel of X where Cy ,, is a positive constant
depending only on d and «. (we take C'; ., = 1 in this talk.)
Define A; := [} 1ga (Xs)dsandlet 7, := inf{s > 0: A, >t} be its right-continuous

inverse.
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Motivation by Two examples Example 1: Trace process

Trace process

Letd > 1, R? := {x = (F,24) : g > 0} andR? := {x = (Z,xq) : x4 < 0}. Let
X = (X, P,) be an isotropic a-stable process in R¢ where « € (0, 2). The infinitesimal
generator of X is the fractional Laplacian A2 := —(—A)2 which can be written as

A% f@) =pv. | (F(0) = F@)Cuale =3~ dy,

where Cy o |z — y| @~ is the jump kernel of X where Cy ,, is a positive constant
depending only on d and «. (we take C'; ., = 1 in this talk.)

Define A; := [} 1ga (Xs)dsandlet 7, := inf{s > 0: A, >t} be its right-continuous
inverse.

The process Y = (Y3):>0, defined by Y; = X, called the trace process of X on Ri.

Panki Kim Potential theory of Dirichlet forms with jump kernels blowing up at the bo



Motivation by Two examples Example 1: Trace process

Trace process through resurrection

The part of the trace process Y until its first hitting time of the boundary
R4 = {(%,0) : T € R4~1} can be described in the following way:
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Motivation by Two examples Example 1: Trace process

Trace process through resurrection

The part of the trace process Y until its first hitting time of the boundary

R4 = {(%,0) : T € R4~1} can be described in the following way:

LetT = rpa = inf{t > 0: X; ¢ R} be the first exit time of X from R<..
+
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Trace process through resurrection

The part of the trace process Y until its first hitting time of the boundary

R4 = {(%,0) : T € R4~1} can be described in the following way:

LetT = rpa = inf{t > 0: X; ¢ R} be the first exit time of X from R<..
+

Letz = X, € R4 the position from which X jumps out of R%, and z = X be the
position where X lands at the exit from R% .
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Trace process through resurrection

GX; (2, w), the Green function of the process X killed upon exiting RE.
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Motivation by Two examples Example 1: Trace process

Trace process through resurrection

Gﬂ’é (z, w), the Green function of the process X killed upon exiting R% . That is,

E. fO 1a(Xp)dt = [, GX, R (z, w)dw.
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Gﬂ’é (z w), the Green function of the process X killed upon exiting R% . That is,

E. fO 1a(Xp)dt = [, GX, R (z, w)dw.
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Motivation by Two examples Example 1: Trace process

Trace process through resurrection

|w — y| =9 is the jump kernel of X.
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Trace process through resurrection

|w — y| =2~ is the jump kernel of X. The distribution of the returning position of X to
R4 is given by the Poisson kernel of the process X in R< :
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Trace process through resurrection

|w — y| =2~ is the jump kernel of X. The distribution of the returning position of X to
R4 is given by the Poisson kernel of the process X in R< :

Pea ()= [ Gz w)ho -y~ duw, yeRL, zeRL.
: [ Gt
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Motivation by Two examples Example 1: Trace process

Trace process through resurrection

|w — y| =2~ is the jump kernel of X. The distribution of the returning position of X to
R4 is given by the Poisson kernel of the process X in R< :

Pea ()= [ Gz w)ho -y~ duw, yeRL, zeRL.
: [ Gt

Forz € ]R(i, ]PZ(XT]Rd € dy) = P]R‘i (Zv y)dy =E; IOT ‘Xs - y|7d’°‘dsdy on Ri
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Motivation by Two examples Example 1: Trace process

Trace process through resurrection

|w — y| =2~ is the jump kernel of X. The distribution of the returning position of X to
R4 is given by the Poisson kernel of the process X in R< :

Pea ()= [ Gz w)ho -y~ duw, yeRL, zeRL.
: [ Gt

Forz € ]R(i, ]PZ(XT]Rd € dy) = P]R‘i (Zv y)dy =E; IOT ‘Xs - y|7d’°‘dsdy on Ri
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Motivation by Two examples Example 1: Trace process

Trace process through resurrection

When X jumps out of ]Ri from the point z, we continue the process by resurrecting it
aty € R% according to the kernel

q(z,y) = /Rd |z — 2|7 Ppa (2,y) dz, a,y € RY. (1.1)
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Example 1: Trace process

Trace process through resurrection

When X jumps out of ]Ri from the point z, we continue the process by resurrecting it
aty € R% according to the kernel

q(z,y) = /Rd |z — 2|7 Ppa (2,y) dz, a,y € RY.

(1.1)
X . .
‘ ‘i y Rd
1 \
1
( : d—a
|z — 2|2 Gra (z,w) e =yl
’ .. ' RrY
9, z W

We will call ¢(z,y) a resurrection kernel.
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Example 1: Trace process

Trace process through resurrection

When X jumps out of ]Ri from the point z, we continue the process by resurrecting it
aty € R% according to the kernel

q(z,y) = /Rd |z — 2|7 Ppa (2,y) dz, a,y € RY.

(1.1)
X . .
‘ ‘i y Rd
1 \
1
( : d—a
|z — 2|2 Gra (z,w) e =yl
’ .. ' RrY
9, z W

We will call ¢(z,y) a resurrection kernel.
Since G2, (-

) is symmetric, it follows that ¢(z, v) = q(y, z) for all z,y € R%
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Motivation by Two examples Example 1: Trace process

Trace process through resurrection

The kernel ¢(z, y) introduces additional jumps from z to y, =,y € Ri.
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Example 1: Trace process

Trace process through resurrection

The kernel ¢(z, y) introduces additional jumps from z to y, =,y € Ri
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Motivation by Two examples Example 1: Trace process

Trace process through resurrection

By using Meyer’s construction (Meyer 75), one can construct a resurrected process on
R4 with jump kernel J(z,y) = |z — y| =4~ + g(=,y).
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Trace process through resurrection

By using Meyer’s construction (Meyer 75), one can construct a resurrected process on
R4 with jump kernel J(z,y) = |z — y| =4~ + g(=,y).

The resurrected process is equal to the part of the trace process Y until it first hits
ORZ.
+
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Motivation by Two examples Example 1: Trace process

Trace process through resurrection

By using Meyer’s construction (Meyer 75), one can construct a resurrected process on
R% with jump kernel J(z,y) = |z — y| =47 + q(x, y).

The resurrected process is equal to the part of the trace process Y until it first hits
ORZ.
+

It follows from [Bogdan, Grzywny, Pietruska-Patuba & Rutkowski, 20] that (in case
d>3),

|z — yl?

a/2
) v Ta Ay < |z —yl.
TdYd

J(@,9) = a(e,9) < |z — 4[4 (
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Motivation by Two examples Example 1: Trace process

Trace process through resurrection

By using Meyer’s construction (Meyer 75), one can construct a resurrected process on
R% with jump kernel J(z,y) = |z — y| =47 + q(x, y).

The resurrected process is equal to the part of the trace process Y until it first hits
ORZ.
+

It follows from [Bogdan, Grzywny, Pietruska-Patuba & Rutkowski, 20] that (in case
d>3),

|z — yl?

a/2
) v Ta Ay < |z —yl.
TdYd

J(@,9) = a(e,9) < |z — 4[4 (

This asymptotic relation shows that the jump kernel J(z, y) blows up with rate a:;“ﬂ
when z approaches the boundary BRi.
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@ Motivation by Two examples

@ Example 2: Non-local Neumann problems
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Example 2: Non-local Neumann problems

Motivation by Two examples

Non-local Neumann problems with corresponding resurrection

kernel

Another motivation is the process introduced in

@ Dipierro, Ros-Oton & Valdinoci. Nonlocal problems with Neumann boundary
conditions. Rev. Mat. Iberoam. 33 (2017), 377-416.

@ Vondracek. A probabilistic approach to non-local quadratic from and its connection
to the Neumann boundary condition problem. Math. Nachrichten 294 (2021),
177-194.

to study non-local Neumann problems.

Panki Kim Potential theory of Dirichlet forms with jump kernels blowing up at the bo




Example 2: Non-local Neumann problems

Motivation by Two examples

Non-local Neumann problems with corresponding resurrection

kernel

Another motivation is the process introduced in

@ Dipierro, Ros-Oton & Valdinoci. Nonlocal problems with Neumann boundary
conditions. Rev. Mat. Iberoam. 33 (2017), 377-416.

@ Vondracek. A probabilistic approach to non-local quadratic from and its connection
to the Neumann boundary condition problem. Math. Nachrichten 294 (2021),
177-194.

to study non-local Neumann problems.
For that process, the resurrection kernel ¢(z, y) is given by (1.1) with the Poisson
kernel Pya (2,y) replaced by |z — y| =47/ [ra |z — w| =9~ *dw.

- +

Panki Kim Potential theory of Dirichlet forms with jump kernels blowing up at the bo




Motivation by Two examples Example 2: Non-local Neumann problems

Non-local Neumann problems with corresponding resurrection

kernel

Another motivation is the process introduced in

@ Dipierro, Ros-Oton & Valdinoci. Nonlocal problems with Neumann boundary
conditions. Rev. Mat. Iberoam. 33 (2017), 377-416.

@ Vondracek. A probabilistic approach to non-local quadratic from and its connection
to the Neumann boundary condition problem. Math. Nachrichten 294 (2021),
177-194.

to study non-local Neumann problems.
For that process, the resurrection kernel ¢(z, y) is given by (1.1) with the Poisson
kernel Pya (2,y) replaced by |z — y| =47/ [ra |z — w| =9~ *dw.
- +
That is,

|z — 2]~z — gy~ d

T,yY) = dz, x,y € R%.

a(@.9) /]Rd Jpa 12 —w|= 4 2dw Y E R
- +
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Motivation by Two examples Example 2: Non-local Neumann problems

Non-local Neumann problems with corresponding resurrection

kernel

Another motivation is the process introduced in

@ Dipierro, Ros-Oton & Valdinoci. Nonlocal problems with Neumann boundary
conditions. Rev. Mat. Iberoam. 33 (2017), 377-416.

@ Vondracek. A probabilistic approach to non-local quadratic from and its connection
to the Neumann boundary condition problem. Math. Nachrichten 294 (2021),
177-194.

to study non-local Neumann problems.
For that process, the resurrection kernel ¢(z, y) is given by (1.1) with the Poisson
kernel Pya (2,y) replaced by |z — y| =47/ [ra |z — w| =9~ *dw.
- +
That is,

|z — 2]~z — gy~ d

T,yY) = dz, x,y € R%.

a(@.9) /]Rd Jpa 12 —w|= 4 2dw Y E R
- +

The jump kernel of this process blows up with rate log || when z approaches the
boundary 9R4 .
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Estimates of resurrection kernel in general case

Resurrection kernel in general case

We generalize these two examples by replacing the Poisson kernel Ppq (z,y) and the

kernel |z — y| =972/ [oa |z — w| =4~ *dw by a very general return kernel p(z, y).
+
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Estimates of resurrection kernel in general case

Resurrection kernel in general case

We generalize these two examples by replacing the Poisson kernel Ppq (z,y) and the
kernel |z — y| =972/ [oa |z — w| =4~ *dw by a very general return kernel p(z, y).

+
Let the kernel y — p(z,y), z € R%, y € R, be a probability density such that the

corresponding resurrection kernel

alz,y) = /Rd |z — 2|79 p(z,y) dy, =,y € RE,

is symmetric.
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Estimates of resurrection kernel in general case

Resurrection kernel in general case

We generalize these two examples by replacing the Poisson kernel Ppq (z,y) and the
kernel |z — y| =972/ [oa |z — w| =4~ *dw by a very general return kernel p(z, y).
+

Let the kernel y — p(z,y), z € R%, y € R, be a probability density such that the
corresponding resurrection kernel

qlz,y) = /Rd |z — 2|79 p(z,y) dy, =,y € RE,

is symmetric.
This flexibility in choosing the return kernel allows us to obtain resurrection kernels with
various blow-up rates at the boundary.

A general upper bound

a(z,y) < c(zg Aya) 4
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Estimates of resurrection kernel in general case

An example of general forms

We consider the following general resurrection kernel:

|y — 2| |za|* dz d
= v R
q(xvy) C/Rd < Z/dlzd| |y_z‘d+o< ‘I—z|d+0" T,y € Ry,
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Estimates of resurrection kernel in general case

An example of general forms

We consider the following general resurrection kernel:

=P\ leal® dz .
= v R
9(@) /R ( valzal ) Ty — 2|t o —gpiras DY ERe

Then
qg(A\z, \y) = /\_d_“q(m, y)
and
q(z + (@,0),y + (4,0)) = q(z, ).

Panki Kim Potential theory of Dirichlet forms with jump kernels blowing up at the bo



Estimates of resurrection kernel in general case

An example of general forms

We consider the following general resurrection kernel:

2 a
y—z Zd dz
q(xvy)::C/D\gd\I/<| | )l | ‘ ) x,ZIGRiv

valzal / |y — 2|9t |z — z]d+e
Then
gz, Ay) = A" %g(, y)
and
a(z + (4,0),y + (,0)) = q(z, y).
Moreover,

q(x,y) = q(y, ).
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Estimates of resurrection kernel in general case

An example of general forms

=2\ _lzl® _ dz a
= v R
e =e [, v (SR ) gt e R

(a) For the trace process of an isotopic a-stable process on R% ,

z a/2 _22 /2 P
R LI (i

ly — z|dte’

B yo!/? Yal2d|

is the Poisson kernel for R% .
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Estimates of resurrection kernel in general case

An example of general forms

=2\ _lzl® _ dz a
= v R
e =e [, v (SR ) gt e R

(a) For the trace process of an isotopic a-stable process on R% ,

z a/2 _22 /2 P
R LI (i

Ydlzal ly — z|d+e’

is the Poisson kernel for R% . Thus, here W (r) = cr®/2.

- 2
yo/
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Estimates of resurrection kernel in general case

An example of general forms

=2\ _lzl® _ dz a
= v R
e =e [, v (SR ) gt e R

(a) For the trace process of an isotopic a-stable process on R% ,
ly - z\?)"‘” |2al®

|z4]%/2 _
p(z,y) =c lz—y| ¢ =c

- 2
yo/

Ydlzal ly — z|d+e’

is the Poisson kernel for R% . Thus, here W (r) = cr®/2.

(b) For the process studied in Non-local Neumann problems,

p(2,9) = |2 = y| 7%/ (=) where ju(2) = fpg |z —y|~?~°dy. Since
u(z) = c1zq| =, we get that |2a®

2,Y) =c———.
p(2,9) o 2|iFa
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Estimates of resurrection kernel in general case

An example of general forms

=2\ _lzl® _ dz a
= v R
e =e [, v (SR ) gt e R

(a) For the trace process of an isotopic a-stable process on R% ,

ly - z\?)"‘” |24l
Ydlzdl ly — z|dte’
is the Poisson kernel for R% . Thus, here W (r) = cr®/2.
(b) For the process studied in Non-local Neumann problems,
p(2,9) = |2 = y| 7%/ (=) where ju(2) = fpg |z —y|~?~°dy. Since
u(z) = c1zq| =, we get that |2a®

p(27 y) =c

|zq|*/2 _
plzy) == mlz—yl ¢ =c
Ya

ly — z|dte”

Thus, here ¥ = c.
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Estimates of resurrection kernel in general case

An example of general forms

Let
B(z,y) =1+ q(z,y)|x — y|*T*
so that

B(z,y)

J(a,y) = |z —y| 77 +q(z,y) = o — gdta’
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Estimates of resurrection kernel in general case

An example of general forms

Let
B(z,y) =1+ q(z,y)|x — y|*T*
so that
B(z,y)

J(a,y) = |z —y| 77 +q(z,y) = o — gdta’

In [KSV], we have established estimates of resurrection kernel for general ¥ with weak
scaling conditions.
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Estimates of resurrection kernel in general case

An example of general forms

Let

B(z,y) := 1+ q(z,y)|z — y|*+*
so that B(o.y)
— —d— _ z,Y
J(z,y) = |z -yl aJHI(%Z/)—m-
In [KSV], we have established estimates of resurrection kernel for general ¥ with weak
scaling conditions.
As a corollary of this general result, we have the following.
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Estimates of resurrection kernel in general case

Blow-up at the boundary: example

Corollary: Let v € (—oco0,1 A a) and § € R. Suppose W(t) = 7 logd ¢, t > 2,
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Estimates of resurrection kernel in general case

Blow-up at the boundary: example

Corollary: Let v € (—oc0,1 A «) and § € R. Suppose W (t) = 7 logd ¢, t > 2, that is, up
to a multiplicative constant,

s \y—Z\Q)
p(z y) _ ‘Zd|a_’y IOg (yd‘zdl
R =

5 \y—2\2>
- (|y—z\2)V log? (=l

= zeRL y e RE.
yg |y —zldtem2 Yalzdl ly — z[d+a—27’ ' +
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Estimates of resurrection kernel in general case

Blow-up at the boundary: example

Corollary: Let v € (—oc0,1 A «) and § € R. Suppose W (t) = 7 logd ¢, t > 2, that is, up
to a multiplicative constant,

B s \y—Z\Q)
p(z,y) = |zq| >~ log (yd\zdl
y) =

5 \y—2\2>
- (|y—z\2)V log? (=l

= zeRL y e RE.
vy ly—zldte—2v ydlzal ly — z[d+a—27’ ’ *

Then (1) for any 2,y € RY with 24 A yg > [x — y/, it holds that
|z — | )d+a

0@, y) = (20 A ya) == (2 V )%, Bla,y) — 1= (
T4 NYd
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Estimates of resurrection kernel in general case

Blow-up at the boundary: example

Corollary: Let v € (—oc0,1 A «) and § € R. Suppose W (t) = 7 logd ¢, t > 2, that is, up
to a multiplicative constant,

B s \y—Z\Q)
p(z,y) = |zq| >~ log (yd\zdl
y) =

5 \y—2\2>
- (|y—z\2)V log? (=l

= zeRL y e RE.
vy ly—zldte—2v ydlzal ly — z[d+a—27’ ’ *

Then (1) for any 2,y € RY with 24 A yg > [x — y/, it holds that
|z — | )d+a

0@, y) = (20 A ya) == (2 V )%, Bla,y) — 1= (
T4 NYd

(2) For z,y € R with 24 A yg < |& — y/, it holds that
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Estimates of resurrection kernel in general case

Blow-up at the boundary: example

Corollary: Let v € (—oc0,1 A «) and § € R. Suppose W (t) = 7 logd ¢, t > 2, that is, up
to a multiplicative constant,

s \y—Z\Q)
p(z y) _ ‘Zd|a_’y IOg (yd‘zdl
R =

5 \y—2\2>
- (|y—z\2)V log? (=l

= zeRL y e RE.
yg |y —zldtem2 Yalzdl ly — z[d+a—27’ ' +

Then (1) for any 2,y € RY with 24 A yg > [x — y/, it holds that
d+a
—d— —d— =Y
0o, 9)= 0 Aya) = (aV a) 4 Bl — 1 (2T
Td A\ Yd
2) For z,y € R% with 24 A yg < |z — y|, it holds that
+

(M)v log® (M) when v > 0;

TdYd Td¥yd
Cdea Jlogdtt (M when s > 1,y = 0;
q(m,y) = J(z,y) = |33 - y| d-a xdyd\rfym
log <e+log( Er )) whend = —1,v = 0;
' when§ < -1,y =0o0r~vy <0.

Panki Kim Potential theory of Dirichlet forms with jump kernels blowing up at the bo



Dirichlet forms with jump kernels blowing up at the boundary

Outline

o Dirichlet forms with jump kernels blowing up at the boundary
@ Setup
@ Decay rate of harmonic function
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Dirichlet forms with jump kernels blowing up at the boundary

Outline

o Dirichlet forms with jump kernels blowing up at the boundary
@ Setup
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Dirichlet forms with jump kernels blowing up at the boundary

Weak scaling condition

Letd > 1, « € (0,2) and assume that 0 < 81 < B2 < 1 A .

Panki Kim Potential theory of Dirichlet forms with jump kernels blowing up at the bo



Dirichlet forms with jump kernels blowing up at the boundary

Weak scaling condition

Letd > 1, « € (0,2) and assume that 0 < 81 < B2 < 1 A .
Let @ be a positive function on (0, o) satisfying ® = 1 on (0, 2)
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Dirichlet forms with jump kernels blowing up at the boundary

Weak scaling condition

Letd > 1, « € (0,2) and assume that 0 < 81 < B2 < 1 A .
Let ® be a positive function on (0, co) satisfying ® = 1 on (0, 2) and the following weak
scaling condition on [2, co): There exist constants C, C> > 0 such that

C1(R/r)Pr < ke

< Co(R/T)?2, 2<r < R< oo
®(r)
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Dirichlet forms with jump kernels blowing up at the boundary

Boundary term

B(z,y)

Define J(z,y) = W.
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Dirichlet forms with jump kernels blowing up at the boundary

Boundary term

B(z,y)

Define J(z,y) = W.

We assume that B(z, y) satisfies the following conditions:
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Dirichlet forms with jump kernels blowing up at the boundary

Boundary term

B(z,y)

Define J(z,y) = W.

We assume that B(z, y) satisfies the following conditions:
(A1) B(z,y) = B(y,z) forall z,y € Ri.
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Dirichlet forms with jump kernels blowing up at the boundary

Boundary term

B(z,y)

Define J(z,y) = W.

We assume that B(z, y) satisfies the following conditions:

(A1) B(z,y) = B(y,z) forall z,y € Ri.

(A2) If a > 1, there exists 0 > « — 1 such that for every a > 0 there exists
C = C(a) > 0 such that

_ 0
|B(z,y) — B(z,z)| < C (7) forall z,y € Ri with zg A yg > alz — y|.
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Dirichlet forms with jump kernels blowing up at the boundary

Boundary term

B(z,y)

Define J(z,y) = W.

We assume that B(z, y) satisfies the following conditions:

(A1) B(z,y) = B(y,z) forall z,y € Ri.

(A2) If a > 1, there exists 0 > « — 1 such that for every a > 0 there exists
C = C(a) > 0 such that

|B(z,y) — B(z,z)] < C (4

(A3) There exists C > 1 such that

0
) for all z,y € RL with 24 A yq > alz — y).

_ ]2 2
clo (L vl ) < B(z,y) < Cd (L vl ) forall z,y € R%.
Td¥Yd
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Dirichlet forms with jump kernels blowing up at the boundary

Boundary term

B(z,y)

Define J(z,y) = W.

We assume that B(z, y) satisfies the following conditions:

(A1) B(z,y) = B(y,z) forall z,y € Ri.

(A2) If a > 1, there exists 0 > « — 1 such that for every a > 0 there exists
C = C(a) > 0 such that

_ 0
|B(z,y) — B(z,z)| < C (u) for all z,y € RE with 24 Ayg > alz — yl.
(A3) There exists C > 1 such that
1 (12 —yl? |z —y|? d
C’_fb( )gB(x,y)SCq)(i) forallz,y € RY.
TaYd TdYd

(A4) Forall z,y € Rfl‘_ and a > 0, B(az, ay) = B(z,y).
Incase d > 2, B(z + (Z,0),y + (%,0)) = B(z,y) forall z,y € R4 and z € R4~1.
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Dirichlet forms with jump kernels blowing up at the boundary

Boundary term

B(z,y)

Define J(z,y) = W.

We assume that B(z, y) satisfies the following conditions:

(A1) B(z,y) = B(y,z) forall z,y € Ri.

(A2) If a > 1, there exists 0 > « — 1 such that for every a > 0 there exists
C = C(a) > 0 such that

_ 0
|B(z,y) — B(z,z)| < C (u) for all z,y € RE with 24 Ayg > alz — yl.

(A3) There exists C > 1 such that

2 _ 2

clo ('x l ) < B(z,y) < Cd (u) forall z,y € R%.
ZTdyYd ZTdYd

(A4) Forall z,y € Rfl‘_ and a > 0, B(az, ay) = B(z,y).

Incase d > 2, B(z + (Z,0),y + (%,0)) = B(z,y) forall z,y € R4 and z € R4~1.

Remark: (1) (A3) = B(z,y) > c¢1 > 0.
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Dirichlet forms with jump kernels blowing up at the boundary

Boundary term

B(z,y)

Define J(z,y) = W.

We assume that B(z, y) satisfies the following conditions:

(A1) B(z,y) = B(y,z) forall z,y € Ri.

(A2) If a > 1, there exists 0 > « — 1 such that for every a > 0 there exists
C = C(a) > 0 such that

_ 0
|B(z,y) — B(z,z)| < C (u) for all z,y € RE with 24 Ayg > alz — yl.

(A3) There exists C > 1 such that

2 _ 2

clo ('x l ) < B(z,y) < Cd (u) forall z,y € R%.
ZTdyYd ZTdYd

(A4) Forall z,y € Rfl‘_ and a > 0, B(az, ay) = B(z,y).

Incase d > 2, B(z + (Z,0),y + (%,0)) = B(z,y) forall z,y € R4 and z € R4~1.

Remark: (1) (A3) = B(z,y) > c1 > 0. (2) (Ad) = B(z,z) =c2 > 0.
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Dirichlet forms with jump kernels blowing up at the boundary

Dirichlet form with critical killing (Potential) term

For k € [0, 00), set

d
RS

r _1 u\xr)—u vlxr)—v x X ’LL.’ﬂ’UZ'I‘Ll’iOLI
s<u,v>.—2/Ri/Ri<(> W)e@)~v@)J (@, v)dyda+ [ ula)o(e)e; *da.
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Dirichlet forms with jump kernels blowing up at the boundary

Dirichlet form with critical killing (Potential) term

For k € [0, 00), set

d
RS

r _1 u\xr)—u vlxr)—v x X ’LL.’ﬂ’UZ'I‘Ll’iOLI
s<u,v>.—2/Ri/Ri<(> W)e@)~v@)J (@, v)dyda+ [ ula)o(e)e; *da.

Let 70 be the closure of C2°(R4) in L2(R%, dx) under £9 := £° + (., ')L2(Ri,dz)-
Then, dueto 52 < 1 A a,
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Dirichlet forms with jump kernels blowing up at the boundary

Dirichlet form with critical killing (Potential) term

For k € [0, 00), set

d
RS

r _1 u\xr)—u vlxr)—v x X ’LL.’ﬂ’UZ'I‘Ll’iOLI
s<u,v>.—2/Ri/Ri<(> W)e@)~v@)J (@, v)dyda+ [ ula)o(e)e; *da.

Let 70 be the closure of C2°(R4) in L2(R%, dx) under £9 := £° + (., ')L2(Ri,dz)-
Then, dueto 52 < 1 A a,

(€9, F0) is a regular Dirichlet form on L?(R< , dz).
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Dirichlet forms with jump kernels blowing up at the boundary

Dirichlet form with critical killing (Potential) term

For k € [0, 00), set

d
RS

r _1 u\xr)—u vlxr)—v x X ’LL.’ﬂ’UZ'I‘Ll’iOLI
s<u,v>.—2/Ri/Ri<(> W)e@)~v@)J (@, v)dyda+ [ ula)o(e)e; *da.

Let 70 be the closure of C2°(R4) in L2(R%, dx) under £9 := £° + (., ')L2(Ri,dz)-
Then, dueto 52 < 1 A a,

(€9, F0) is a regular Dirichlet form on L?(R< , dz).
Forx > 0, let 7% := FOn LQ(Ri,nz;adz).
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Dirichlet forms with jump kernels blowing up at the boundary

Dirichlet form with critical killing (Potential) term

For k € [0, 00), set

r _1 u\xr)—u vlxr)—v x X um’vxl{xiaz
s<u,v>.—2/Ri/Ri<(> ) (0(@) (y))J(,y>dyd+/w+ (e)oe)r “ de.

Let 70 be the closure of C2°(R4) in L2(R%, dx) under £9 := £° + (., ')L2<Ri,dz)-
Then, dueto 52 < 1 A a,

(€9, F0) is a regular Dirichlet form on L?(R< , dz).
Forx > 0, let 7% := FOn LQ(Ri,nz;adz).

(&%, F*) is also a regular Dirichlet form on L2(R% , dx).
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Dirichlet forms with jump kernels blowing up at the boundary

Dirichlet form with critical killing (Potential) term

For k € [0, 00), set

d
RS

r _1 u\xr)—u vlxr)—v x X um’vxl{xiaz
s<u,v>.—2/Ri/Ri<(> W)e@)~v@)J (@, v)dyda+ [ ula)o(e)e; *da.

Let 70 be the closure of C2°(R4) in L2(R%, dx) under £9 := £° + (., ')L2<Ri,dz)-
Then, dueto 52 < 1 A a,

(€9, F0) is a regular Dirichlet form on L?(R< , dz).

For x> 0, let 7% := FO N L2(RY, ka; “dx).

(&%, F*) is also a regular Dirichlet form on L2(R% , dx).

Under assumptions (A1)-(A4), for all k € [0, c0), there exists a symmetric, scale

invariant and horizontally translation invariant Hunt process
Y* = ((Y{)t>0, (Pz),cra ) associated with (E7, F*).
- +
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Dirichlet forms with jump kernels blowing up at the boundary Decay rate of harmonic function

Outline

o Dirichlet forms with jump kernels blowing up at the boundary

@ Decay rate of harmonic function
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Dirichlet forms with jump kernels blowing up at the boundary Decay rate of harmonic function

Decay rate and the constant on the killing function

We now associate the constant « from the killing function =, * with a positive
parameter p = p,, > 0 which will be the decay rate of harmonic functions.
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Dirichlet forms with jump kernels blowing up at the boundary Decay rate of harmonic function

Decay rate and the constant on the killing function

We now associate the constant « from the killing function =, * with a positive
parameter P =prx> 0 which will be the decay rate of harmonic functions.
Let ey := (0,1). For ¢ € [0, — B2), set

q_ _ga—q—1\ B 1— 1
/ / s1-1A s )B(A = 9)u1),50a) o e
Rd 1

1 _ s 1+a (|u‘2 + 1)(d+a)/2
R R
51 — —s ;
. 1= sita B(l,s)ds ifd=1.
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Dirichlet forms with jump kernels blowing up at the boundary Decay rate of harmonic function

Decay rate and the constant on the killing function

We now associate the constant « from the killing function =, * with a positive
parameter P =prx> 0 which will be the decay rate of harmonic functions.
Let ey := (0,1). For ¢ € [0, — B2), set

q_ _ga—q—1\ B 1— 1
/ / s1-1A s )B(A = 9)u1),50a) o e
Rd 1

1 _ s 1+a (|u‘2 + 1)(d+a)/2
R R
51 — —s ;
. 1= sita B(l,s)ds ifd=1.

Then C(e,0,B) = C(a,aa —1,B) =0
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Dirichlet forms with jump kernels blowing up at the boundary Decay rate of harmonic function

Decay rate and the constant on the killing function

We now associate the constant « from the killing function =, * with a positive
parameter P =prx> 0 which will be the decay rate of harmonic functions.
Let ey := (0,1). For ¢ € [0, — B2), set

q_ _ga—q—1\ B 1— 1
/ / s1-1A s )B(A = 9)u1),50a) o e
Rd 1

1 _ s 1+a (|u‘2 + 1)(d+a)/2
cleal (s -1(A =297
s9 — —s i
. 1= sita B(l,s)ds ifd=1.

Then C(«, 0,B) = C(a, . — 1, B) = 0 and the function g — C(«, ¢, B) is strictly
increasing and continuous on [(a — 1) 4, o — B2).
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Dirichlet forms with jump kernels blowing up at the boundary Decay rate of harmonic function

Decay rate and the constant on the killing function

We now associate the constant « from the killing function =, * with a positive
parameter P =prx> 0 which will be the decay rate of harmonic functions.
Let ey := (0,1). For ¢ € [0, — B2), set

q_ _ga—q—1\ B 1— 1
/ / s1-1A s )B(A = 9)u1),50a) o e
Rd 1

1 _ s 1+a (|u‘2 + 1)(d+a)/2
R R
51 — —s ;
. 1= sita B(l,s)ds ifd=1.

Then C(«, 0,B) = C(a, . — 1, B) = 0 and the function g — C(«, ¢, B) is strictly
increasing and continuous on [(a — 1) 4, o — B2).
Consequently, for every 0 < x < limgpq—g, Cla, ¢, B) < oo,
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Dirichlet forms with jump kernels blowing up at the boundary Decay rate of harmonic function

Decay rate and the constant on the killing function

We now associate the constant « from the killing function =, * with a positive
parameter P =prx> 0 which will be the decay rate of harmonic functions.
Let ey := (0,1). For ¢ € [0, — B2), set

q_ _ga—q—1\ B 1— 1
/ / s1-1A s )B(A = 9)u1),50a) o e
Rd 1

1 _ s 1+a (|u‘2 + 1)(d+a)/2
cleal (s -1(A =297
s9 — —s i
. 1= sita B(l,s)ds ifd=1.

Then C(«, 0,B) = C(a, . — 1, B) = 0 and the function g — C(«, ¢, B) is strictly
increasing and continuous on [(a — 1) 4, o — B2).
Consequently, for every 0 < k < limgpq—g, C(a, g, B) < oo, there exists a unique

w € -1 i,a— such that
pr€llo=Dra=F) k= C(a, pr, B). 3.1)
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Dirichlet forms with jump kernels blowing up at the boundary Decay rate of harmonic function

Decay rate and the constant on the killing function

We now associate the constant « from the killing function =, * with a positive
parameter P =prx> 0 which will be the decay rate of harmonic functions.
Let ey := (0,1). For ¢ € [0, — B2), set

q_ _gax—a—1y B((1 — 1
/ / s1-1A s )B(A = 9)u1),50a) o e
Rd 1

1_5 1+a (lu‘2+1)(d+a)/2
COTBI=N" 0 (0 1y = somay
s — -8 i
. 1= sita B(l,s)ds ifd=1.

Then C(«, 0,B) = C(a, . — 1, B) = 0 and the function g — C(«, ¢, B) is strictly
increasing and continuous on [(a — 1) 4, o — B2).
Consequently, for every 0 < k < limgpq—g, C(a, g, B) < oo, there exists a unique

k € [(a—1)4,a— such that
pr€llo= by o= f2) K = C(a,pr, B). (3.1)
When &(r) = r# with 8 € (0,1 A «), it holds that lim 44— 5 C(e, g, B) = o0, SO
K — P IS an increasing bijection from [0, co) onto [(a — 1), — B).
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Dirichlet forms with jump kernels blowing up at the boundary Decay rate of harmonic function

In the remainder of this talk we will fix & € [0, limg1q—g, C(c, g, B)), and assume
a>1lifk=0sothatpo =a—1>0.
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Dirichlet forms with jump kernels blowing up at the boundary Decay rate of harmonic function

In the remainder of this talk we will fix & € [0, limg1q—g, C(c, g, B)), and assume
a>1lifk=0sothatpo =a—1>0.
For notational simplicity, in the remainder of this talk, we omit the superscript x on p,.

and use p instead of p; in (3.1).
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Dirichlet forms with jump kernels blowing up at the boundary Decay rate of harmonic function

In the remainder of this talk we will fix & € [0, limg1q—g, C(c, g, B)), and assume
a>1lifk=0sothatpo =a—1>0.
For notational simplicity, in the remainder of this talk, we omit the superscript x on p,.

and use p instead of p; in (3.1).
The role of the parameter p and its connection to x = C(«, p, B) can be seen from the

following observation.
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Dirichlet forms with jump kernels blowing up at the boundary Decay rate of harmonic function

In the remainder of this talk we will fix & € [0, limg1q—g, C(c, g, B)), and assume
a>1lifk=0sothatpo =a—1>0.

For notational simplicity, in the remainder of this talk, we omit the superscript x on p,.
and use p instead of p; in (3.1).

The role of the parameter p and its connection to x = C(«, p, B) can be seen from the

following observation. Let

LEf(@) = L8 (@) = . | | (F(0) = (&) T(w.0) dy=Clap. Byay (@), = € B,
+

whenever the principal value integral makes sense.
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Dirichlet forms with jump kernels blowing up at the boundary Decay rate of harmonic function

In the remainder of this talk we will fix & € [0, limg1q—g, C(c, g, B)), and assume
a>1lifk=0sothatpo =a—1>0.

For notational simplicity, in the remainder of this talk, we omit the superscript x on p,.
and use p instead of p; in (3.1).

The role of the parameter p and its connection to x = C(«, p, B) can be seen from the
following observation. Let

LEf(@) = L8 (@) = . | | (F(0) = (&) T(w.0) dy=Clap. Byay (@), = € B,
+
whenever the principal value integral makes sense.

If gp(x) = x5, then LB g, = 0.
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Dirichlet forms with jump kernels blowing up at the boundary Decay rate of harmonic function

In the remainder of this talk we will fix & € [0, limg1q—g, C(c, g, B)), and assume
a>1lifk=0sothatpo =a—1>0.

For notational simplicity, in the remainder of this talk, we omit the superscript x on p,.
and use p instead of p; in (3.1).

The role of the parameter p and its connection to x = C(«, p, B) can be seen from the

following observation. Let

LEf(@) = L8 (@) = . | | (F(0) = (&) T(w.0) dy=Clap. Byay (@), = € B,
+

whenever the principal value integral makes sense.

If gp(x) = x5, then LB g, = 0.

Hence the operator LB annihilates the p-th power of the distance to the boundary.
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Main results

Outline

© Main results
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Main results

Scale invariant boundary Harnack principle with exact decay rate

Supposep E (0,0L - ﬁZ) N [(a - 1)+,Oé - ﬁ?)

Panki Kim Potential theory of Dirichlet forms with jump kernels blowing up at the bo



Main results

Scale invariant boundary Harnack principle with exact decay rate

Suppose pE (Ov o — ﬁZ) N [(a - 1)+7 o — ﬁ?)
Assume that B satisfies (A1)-(A4) and k = C(a, p, B).
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Main results

Scale invariant boundary Harnack principle with exact decay rate

Theorem 2

Suppose p € (0, — B2) N [( — 1)+, — B2).

Assume that B satisfies (A1)-(A4) and « = C(«, p, B). Then there exists C > 1 such
that for all » > 0, @ € R?~1, and any non-negative function f in R% which is harmonic
in B((w,0),2r) NR< with respect to Y* and vanishes continuously on

B((w,0),2r) N ORY, we have
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Main results

Scale invariant boundary Harnack principle with exact decay rate

Theorem 2

Suppose p € (0, — B2) N [( — 1)+, — B2).

Assume that B satisfies (A1)-(A4) and « = C(«, p, B). Then there exists C > 1 such
that for all » > 0, @ € R?~1, and any non-negative function f in R% which is harmonic
in B((w,0),2r) NR< with respect to Y* and vanishes continuously on

B((w,0),2r) N ORY, we have

()7 f(y), x,y € B((@,0),7/2)) NRY.

zg 0
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Main results

Sharp two-sided estimates for the Green function

Suppose that p € (0, — B2) N [( — 1)+, @ — B2) and that B satisfies (A1)-(A4) and
k= C(o, p, B).
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Main results

Sharp two-sided estimates for the Green function

Theorem 3

Suppose that p € (0, — B2) N [( — 1)+, @ — B2) and that B satisfies (A1)-(A4) and
k = C(a, p, B). Then the process Y* admits a Green function
G* :R% x RY — [0, oo] such that G*(z, -) is continuous in RY \ {z}.
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Main results

Sharp two-sided estimates for the Green function

Theorem 3

Suppose that p € (0, — B2) N [( — 1)+, @ — B2) and that B satisfies (A1)-(A4) and
k = C(a, p, B). Then the process Y* admits a Green function

G* :R% x RY — [0, oo] such that G* (=, -) is continuous in RS \ {z}. Moreover,
G*(z,vy) has the following estimates: for all z,y € R% ,

p p 1
( g /\1) ( b /\1) —— a<d
|z -yl |z — yl |z — yld=o

A © Vv
G (z,y) < eaAl Al) log|e+ SV , a=1=d;
|z =yl |z —yl
A p
(Z2L A1) @vavie-a) T, o> 1=d.
|z — yl
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The results in this talk can be considered as a counterpart of our previous work on
jump kernels vanishing at the boundary:

[KSV1] K, Song & Vondracek: On potential theory of Markov processes with jump kernels
decaying at the boundary. Potential Analysis (2023).

[KSV2] K, Song & Vondracek, Sharp two-sided Green function estimates for Dirichlet
forms degenerate at the boundary. To appear in Journal of the European
Mathematical Society (JEMS), 2023.

[KSV3] K, Song & Vondracek, Potential theory of Dirichlet forms degenerate at the
boundary: the case of no killing potential. To appear in Mathematische Annalen,
2023.
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The results in this talk can be considered as a counterpart of our previous work on
jump kernels vanishing at the boundary:

[KSV1] K, Song & Vondracek: On potential theory of Markov processes with jump kernels
decaying at the boundary. Potential Analysis (2023).

[KSV2] K, Song & Vondracek, Sharp two-sided Green function estimates for Dirichlet
forms degenerate at the boundary. To appear in Journal of the European
Mathematical Society (JEMS), 2023.

[KSV3] K, Song & Vondracek, Potential theory of Dirichlet forms degenerate at the
boundary: the case of no killing potential. To appear in Mathematische Annalen,
2023.

The research in [KSV1]-[KSV3] was motivated by the fact that subordinate killed Lévy
processes have jump kernels vanishing at the boundary.
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Combined with jump kernel vanishing at the boundary

As a particular case,

B B B
X T =
B(z,y) < (‘m_"’y| A 1) (wy_dy‘ A 1) = (|x iy;P A 1) = B(z,y).
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Main results

Combined with jump kernel vanishing at the boundary

As a particular case,

B B B
X €T e
B(z,y) < (‘m_"’y| A 1) (|xy_‘iy‘ A 1) = (|x iy;|2 A 1) = B(z,y).

This is the same form as in the blow-up case with ®(t) =t=#, —(1 Aa) < 8 < 0.

In the decay case (3 > 0), for every « € [0, 00), there is a unique

p=pk € [(a — 1)+, + B) such that k = C(«, p, B). This is exactly equal to the
blow-up case.
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Main results

Combined with jump kernel vanishing at the boundary

As a particular case,

B8 B8 B
Tq Ya T4yd =
B(I’y)x(\x—m“) (|x—y\“) x<|ac—y|2“) = Bl@y).

This is the same form as in the blow-up case with ®(t) =t=#, —(1 Aa) < 8 < 0.

In the decay case (8 > 0), for every « € [0, 00), there is a unique

p=pk € [(a — 1)+, + B) such that k = C(«, p, B). This is exactly equal to the
blow-up case.

In the decay case with 3 as above, we have already proved the BHP and the Green
function estimate with the decay rate equal to the p-th power of the distance to the
boundary. Thus, we now have these results for all —(1 A ) < 8 < co.
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Main results

No killing case

Suppose k = 0, « > 1, (A2) and (A4) hold and

Bla,y) = (Ixaiiy\ " 1>6 (\wy—dyl " 1)ﬁ =By

where —(1 A a) < 8 < oco.
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Main results

No killing case

Suppose k = 0, « > 1, (A2) and (A4) hold and

Bla,y) = (Ixaiiy\ " 1>6 (\wy—dyl " 1)ﬁ =By

where —(1 A a) < 8 < oco.
The corresponding non-local operator is

B(z,y)

_E\Wd) d
o —yjare W TER

Lfa) = v [ (@) = f(a)
+
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Main results

No killing case

Suppose k = 0, « > 1, (A2) and (A4) hold and

Bla,y) = (Ixaiiy\ " 1>6 (\wy—dyl " 1)ﬁ =By

where —(1 A a) < 8 < oco.
The corresponding non-local operator is

B(z,y)

d
o yld+a dy, = €eR%,

Lfa) = v [ (@) = f(a)
+

Then BHP holds and the standard form of Green function estimates with p = o — 1.
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Main results

No killing case

Suppose k = 0, « > 1, (A2) and (A4) hold and

Bla,y) = (Ixaiiy\ " 1>6 (\wy—dyl " 1)ﬁ =By

where —(1 A a) < 8 < oco.
The corresponding non-local operator is

B(z,y)

d
o yld+a dy, = €eR%,

Lfa) = v [ (@) = f(a)
+

Then BHP holds and the standard form of Green function estimates with p = o — 1.

This covers the case of the censored «a-stable process (B(z,y) = 1), o € (1,2),
studied in Bogdan, Burdzy & Chen, 03, in the half-space case.
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Thank you.
AL LY.

Panki Kim Potential theory of Dirichlet forms with jump kernels blowing up at the bo



	Main Part
	Motivation by Two examples
	Example 1: Trace process
	Example 2: Non-local Neumann problems

	Estimates of resurrection kernel in general case
	Dirichlet forms with jump kernels blowing up at the boundary
	Setup
	Decay rate of harmonic function

	Main results


